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Abstract

We present a verification and validation analysis of a coordinate-transformation-based numerical
solution method for the two-dimensional axisymmetric magnetic diffusion equation, implemented
in the finite-element simulation code ALEGRA. The transformation, suggested by Melissen and
Simkin, yields an equation set perfectly suited for linear finite elements and for problems with
large jumps in material conductivity near the axis. The verification analysis examines transient
magnetic diffusion in a rod or wire in a very low conductivity background by first deriving an
approximate analytic solution using perturbation theory. This approach for generating a reference
solution is shown to be not fully satisfactory. A specialized approach for manufacturing an exact
solution is then used to demonstrate second-order convergence under spatial refinement and tem-
poral refinement. For this new implementation, a significant improvement relative to previously
available formulations is observed. Benefits in accuracy for computed current density and Joule
heating are also demonstrated. The validation analysis examines the circuit-driven explosion of a
copper wire using resistive magnetohydrodynamics modeling, in comparison to experimental tests.
The new implementation matches the accuracy of the existing formulation, with both formulations
capturing the experimental burst time and action to within approximately 2%.
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Chapter 1

Introduction

The ALEGRA code solves the resistive magnetohydrodynamic (MHD) equations in an arbi-
trary Lagrangian-Eulerian (ALE) computational framework [6]. These continuum equations are
used to model high-current, high-energy field phenomena in conducting media. Operator splitting
in time in ALEGRA results in a transient magnetic sub-problem of the form:

∂B
∂ t

= −∇× (
1
σ

(∇× B
µ

)) (1.1)

or, in vector potential form,

σ

(
−∂A

∂ t
−∇φ

)
= ∇× (

∇×A
µ

). (1.2)

where σ is the material conductivity of the continuum, µ is the magnetic permeability of the
continuum, B is the magnetic flux density, A is the vector potential and φ is the scalar potential.

In this report, we are interested in the two dimensional simplifications of these equations when
the problem is axisymmetric and the only dependent variable is the out-of-plane magnetic flux
density component, Bθ .

Code has already been developed in ALEGRA to solve for Bθ under these conditions with
the constraint that the magnetic permeability, µ , is constant. We seek to improve the Bθ code
as currently implemented. We show that for a specially chosen test problem, one of the original
formulations of the code, which is referred to as the FIFE (Fully Integrated Finite Element) for-
mulation, can converge very slowly to the correct solution. An alternate formulation, which is
called the R-Scaled formulation, solves for rBθ and converges much more rapidly, but it tends to
be inaccurate near r = 0, where r is the radial coordinate in a cylindrically symmetric coordinate
system. Both of these issues restrict the analyst’s ability to resolve problems of interest, so here
we implement a new formulation, referred to as the PSI-S formulation, to rectify these issues.

The PSI-S formulation is inspired by a paper written by J.B.M. Melissen and J. Simkin [10]. In
their paper, they apply a clever change of radial coordinates to the axisymmetric version of Equa-
tion 1.2 when using the out-of-plane vector potential times r as the dependent scalar field. This
resulted in a large overall improvement in the discrete error. They show excellent improvement in
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accuracy for material property jumps in µ near the axis. We use the same strategy with Equation
1.1 to produce the PSI-S formulation and expect much improved results for problems with con-
ductivity jumps near the axis. We will see that the analytic modification to the equations generates
an equation set perfectly suited for linear finite elements.

Thus, we expect the PSI-S formulation to be more accurate and to converge faster than the cur-
rent formulations, and in order to demonstrate this superiority, we perform a verification analysis
and report the results below.

We also examine some consequences of the PSI-S formulation beyond verification of the fun-
damental field variable. Several variables show improved computational accuracy with the PSI-S
formulation. Further study is required to completely understand the effects of the PSI-S formu-
lation on these variables, but some results are immediately apparent and these are the ones we
show. In addition, we use the PSI-S formulation on an exploding wire simulation to see how it per-
forms on a much larger and more complicated problem, and then compare its performance to the
R-Scaled formulation. The results are significant enough for us to recommend future study on the
differences between the two formulations and suggest that a validation study would be particularly
useful.

As a final note, if a non-constant µ is necessary or desirable, we stress that one would need to
modify the Bθ formulation slightly to solve using an Hθ nodal finite element approach in order to
satisfy continuity requirements on H. In addition, in the case of in-plane fields with variable µ , the
Aθ formulation in ALEGRA is applicable and the approach discussed in this report would apply
and would provide improved fidelity for non-constant µ . These possible developments are under
consideration but are not covered in this report.
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Chapter 2

Finite Element Formulations

Under 2D cylindrically symmetric assumptions, ALEGRA performs computations in an (r,z)
coordinate system, where r represents the radius in cylindrical geometry, and z represents the
orthogonal direction in the plane. Following Melissen and Simkin, we perform a coordinate change
on the R-Scaled formulation, taking it from (r,z) coordinates to (s,z) coordinates, where s = r2 and
setting ψ = rBθ to be the dependent variable. This relatively simple change moves the radial axis
singularity in the magnetic diffusion equations from its position in the radial spatial operator to
a benign position in the mass matrix and the z differential operator. This transformation is the
foundation of our entire report. In this chapter we write down the magnetic diffusion equations
and their finite element matrix equivalents for the different formulations and show how they differ.
The FIFE and R-Scaled formulations are described in a broader ALEGRA context in [8]. We
restate and clarify these equations below and then offer here a complete and detailed derivation of
the PSI-S formulation.

Magnetic Diffusion Equations

We begin with the magnetic diffusion equation that ALEGRA solves after the Lagrangian hy-
drodynamic motion step. This is Equation 1.1 written in cylindrically symmetric coordinates and
assuming only out-of-plane magnetic field components in the azimuthal direction. In general, the
permeability, µ , cannot be brought out from the innermost partial derivative of the right-hand-side
since, in general, it may be a function of location and material state. However, for the purposes
of this formulation, it is required to be constant and is thus written together with the resistivity,
η = 1/σ . For the purposes of this report the flux density, Bθ , and the magnetic field, Hθ are
proportional, Bθ = µHθ , and µ = µ0 is the constant permeability of free space.

The resulting scalar equation in 2D cylindrical geometry for Bθ is

∂Bθ

∂ t
=

∂

∂ r

(
η

µr
∂ (rBθ )

∂ r

)
+

∂

∂ z

(
η

µ

∂Bθ

∂ z

)
(2.1)
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Multiplying Equation 2.1 by r, we obtain an equation for the magnetic stream function, ψ = rBθ ,

∂ψ

∂ t
= r

∂

∂ r

(
η

µr
∂ψ

∂ r

)
+

∂

∂ z

(
η

µ

∂ψ

∂ z

)
. (2.2)

Alternatively, by dividing Equation 2.1 by 2r, and making the Melissen-Simkin change of coordi-
nates: s = r2, with ds = 2rdr, we obtain an alternate magnetic diffusion equation for the stream
function,

1
2s

∂ψ

∂ t
=

∂

∂ s

(
2η

µ

∂ψ

∂ s

)
+

∂

∂ z

(
η

2sµ

∂ψ

∂ z

)
. (2.3)

Note that s does not appear inside an s derivative, showing that we have removed the radial coor-
dinate from inside the radial spatial operator. The factor of 1/2 arises from the desire to ensure a
consistent energy definition across the weak forms discussed below.

Discrete Magnetic Diffusion Equations

We now summarize the finite element weak form equations for the magnetic diffusion operator
for the three formulations below. This is accomplished by multiplying each equation by a test
function, integrating over the volume and utilizing the divergence theorem to reduce the order of
derivatives. The equations are written in such a form that replacing the test function by the solution
gives a magnetic energy equation with an equivalent magnetic energy definition between the three
equations. The required additional factor of 2π is not shown however.

The weak form for the FIFE formulation (Bθ (r,z, t)) is

∫
Ωe

W
∂Bθ

∂ t
rdrdz+

∫
Ωe

((
1
r

∂ (rW )
∂ r

)
η

µ

(
1
r

∂ (rBθ )
∂ r

)
+

∂W
∂ z

η

µ

∂Bθ

∂ z

)
rdrdz (2.4)

=
∫

Γe

rWE · tdl

where by Ohm’s Law, E = ηJ, is the electric field in the plane, t is the unit tangent vector, and l is
arc-length in the (r,z) plane. The discrete magnetic flux density, Bθ , is assumed to vary bi-linearly
within each quadrilateral mesh element in a piece-linear function space with a basis set given by the
finite element hat functions, N j. The test functions Wi are from the same discrete space. Therefore,
we have the represention Bθ = ∑ j B jN j and applying all possible test functions leads to a global
equation set. ALEGRA assumes a backward Euler time discretization and integrates the Neumann
boundary condition term via a midpoint quadrature in time. Continuity of tangential electric field
provides for cancelling Neumann terms at interior element boundaries and thus does not need to
be computed there. Thus,
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1
∆t

Mi j

(
Bn+1

j −Bn
j

)
+Ki jBn+1

j = Ln+1/2
i (2.5)

where

Mi j = ∑
e∈i

∫
Ωe

NiN jrdrdz (2.6)

Ki j = ∑
e∈i

∫
Ωe

((
∂Ni

∂ r
+

Ni

r

)
η

µ

(
∂N j

∂ r
+

Ni

r

)
+

∂Ni

∂ z
η

µ

∂N j

∂ z

)
rdrdz

Ln+1/2
i = ∑

e∈i

∫
Γe

rNiEn+1/2 · tdl.

The weak form for the R-Scaled formulation (ψ(r,z)) is

∫
Ωe

W
1
r

∂ψ

∂ t
drdz+

∫
Ωe

(
∂W
∂ r

η

rµ

∂ψ

∂ r
+

∂W
∂ z

η

rµ

∂ψ

∂ z

)
drdz (2.7)

=
∫

Γe

WE · tdl

where E, t, and l are same as in the FIFE weak form. We again have ψ = ∑ j ψ jN j and the global
equation

1
∆t

Mi j

(
ψ

n+1
j −ψ

n
j

)
+Ki jψ

n+1
j = Ln+1/2

i (2.8)

where

Mi j = ∑
e∈i

∫
Ωe

Ni
1
r

N jdrdz (2.9)

Ki j = ∑
e∈i

∫
Ωe

(
∂Ni

∂ r
η

rµ

∂N j

∂ r
+

∂Ni

∂ z
η

rµ

∂N j

∂ z

)
drdz

Ln+1/2
i = ∑

e∈i

∫
Γe

NiEn+1/2 · tdl.

We now derive the weak form for the PSI-S formulation (ψ(s,z, t)). Beginning with Equation
2.3, we multiply by an arbitrary test function W and take a scaled volume integral of 2.3 on an
arbitrary element e, resulting in Equation 2.10 where Ωe represents the domain of element e. The
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factor of 1/2 ensures that the quadratic form associated with the magnetic energy is scaled to match
the weak forms of the other formulations.

∫
Ωe

W
1
2s

∂ψ

∂ t
dsdz =

∫
Ωe

W
(

∂

∂ s

(
2η

µ

∂ψ

∂ s

)
+

∂

∂ z

(
η

2sµ

∂ψ

∂ z

))
dsdz

=
∫

Ωe

W (∇ ·M(s)∇ψ)dzdz (2.10)

where

M(s) =

[
2η

µ
0

0 η

2µs

]
.

Since W is a scalar quantity, we can use the vector calculus identity

∇ · ( f A) = (∇ f ) ·A+ f (∇ ·A) (2.11)

where f is a scalar function and A is a vector function in the form

∇ · (WM∇ψ) = ∇W · (M∇ψ)+W (∇ ·M∇ψ)

to obtain

∫
Ωe

W
1
2s

∂ψ

∂ t
dsdz =

∫
Ωe

∇ · (WM∇ψ)dsdz−
∫

Ωe

∇W · (M∇ψ)dsdz. (2.12)

Applying the divergence theorem,

∫
Ω

(∇ ·F)dV =
∫

∂Ω

(F ·n)dS (2.13)

to Equation 2.12, gives

∫
Ωe

W
1
2s

∂ψ

∂ t
dsdz+

∫
Ωe

∇W · (M∇ψ)dsdz =
∫

Γe

(WM∇ψ) ·ndl (2.14)
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where n is the unit vector in the plane normal to the boundary and Γe denotes the boundary of the
element e. Therefore,

∫
Ωe

W
1
2s

∂ψ

∂ t
dsdz+

∫
Ωe

∇W · (M∇ψ)dsdz =
∫

Γe

(WM∇ψ) ·ndl. (2.15)

Using Ohm’s law, Equation 2.15 further simplifies to

∫
Ωe

W
1
2s

∂ψ

∂ t
dsdz+

∫
Ωe

∇W · (M∇ψ)dsdz =
∫

Γe

W (SηJ) · tdl

=
∫

Γe

W (SE) · tdl (2.16)

where

J =− 1
µ
√

s
∂ψ

∂ z
ŝ+

2
µ

∂ψ

∂ s
ẑ (2.17)

is the current density in the plane, t = (−nz,ns) is the unit tangent vector, E = ηJ is the electric
field, and

S =

[
1

2
√

s 0
0 1

]
. (2.18)

Finally

∫
Ωe

W
1
2s

∂ψ

∂ t
dsdz+

∫
Ωe

(
∂W
∂ s

2η

µ

∂ψ

∂ s
+

∂W
∂ z

η

2µs
∂ψ

∂ z

)
dsdz =

∫
Γe

W (SE) · tdl (2.19)

Again assuming linear finite element shape functions and ψ = ∑ j ψ jN j we obtain the following
global equation:

1
∆t

Mi j

(
ψ

n+1
j −ψ

n
j

)
+Ki jψ

n+1
j = Ln+1/2

i (2.20)
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with elemental matrices

Mi j = ∑
e∈i

∫
Ωe

Ni
1
2s

N jdsdz (2.21)

Ki j = ∑
e∈i

∫
Ωe

(
∂Ni

∂ s
2η

µ

∂N j

∂ s
+

∂Ni

∂ z
η

2µs
∂N j

∂ z

)
dsdz

Ln+1/2
i = ∑

e∈i

∫
Γe

Ni

(
SEn+1/2

)
· tdl.

Note the presence of the 1/s terms appearing in the integrals in Equation 2.19. While these terms
might initially appear to be problematic as s→ 0, zero Dirichlet conditions are imposed on the
solution on the axis and the solution and the test functions are O(s) as s→ 0. Examination of the
weak form shows that no singular integrals are required to be calculated.
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Chapter 3

A Relevant Verification Problem

In order to perform our verification analysis, we need to design a test problem that is simple
enough for analytic study, yet has all the features of a typical MHD problems of interest so that
we can be sure to stress the numerical algorithm in a relevant way. We are interested in problems
which have large jumps in material conductivity near the axis.

Our problem of choice is a wire in a void model, with a constant, axial-tangential electric
field assumed to exist instantaneously along the interface at time t = 0. Figure 3.1 shows the
problem’s physical set up: A cylindrical rod of height h, radius a, and conductivity σr, surrounded
by a void region of conductivity σv � σr, and radial depth b− a. Because the Bθ formulation
requires a constant magnetic permeability µ , we set µ = µ0, the magnetic permeability of free
space, everywhere. We assume an instantaneous jump at t = 0 to a constant, axial-tangential
electric field along the interface of the rod and the void, which generates a time dependent magnetic
flux, Bθ , through the rod and the void.

6

θ

h
ẑ

(0,0) a b

Figure 1: Metal Rod in a Void

6

h
ẑ

Figure 2: ALEGRA 2D (r,z) Cross Section

e tan bc

2mm 3mm

1mm rod void

Figure 3: 2D (r,z) mesh with BC on right side

1

Figure 3.1: Metal Rod in a Void

Inside the rod, the solution for Bθ should appear as a magnetic diffusion wave into the rod
early in time until reaching a radial linear steady state profile. This will happen regardless of
the dimensions of the rod or the magnitude of the electric field applied, and a complete analytic
expression for this behavior is attainable using Laplace transforms. In the void, a similar situation
applies and Ampere’s law says that Bθ should behave approximately like µ0I(t)

2πr for all time, where
I(t) is the current in the rod and r is the distance from the z axis. However, this is merely the
leading order solution for zero conductivity in the void. We also want to demonstrate a robust
solution methodology when the conductivity in the void is non-zero. The Bθ formulation is unable
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to handle zero-valued conductivity, so we set the void conductivity to be very small relative to the
conductivity of the rod (e.g. σv

σr
≈ 10−6). The ramification is that now the solution in the void region

is perturbed, making the analytic solution more difficult to derive. We could still, in principle,
solve the inner-outer region exact solution via transform techniques for a constant electric field
boundary condition at r = b but this is unnecessary, and would not provide much additional value;
so instead, we choose the electric field we desire at the interface r = a, for which we have a simple
exact solution, and then compute the electric field boundary condition for the interface at r = b
that will impose it. This will provide an excellent verification of ALEGRA’s ability to perform
properly on a time dependent problem with a conductivity jump in an axisymmetric geometry. We
focus first on the exact solution in the rod, which we can solve for using Laplace transforms and
residue theory. Subsequently, we present first a perturbation solution in the void which matches
boundary conditons at r = a according to the perturbation approach. This will be followed by a
derivation of an exact solution in the void extended directly term by term from the exact solution
in the rod. These solutions are used to analyze the performance of the discrete numerical methods.

The Solution for Bθ in the Rod

Consider a thin rod of radius a as depicted in Figure 3.1. It is convenient to solve this problem
using the vector potential form of the equations, so we begin with boundary value problem 3.1:

∇×∇×A = µ0σr

(
−∂A

∂ t
−∇φ

)
φ(z = 0) = 0; φ(z = h) =−V ; ∇φ ·n(r = a) = 0 (3.1)

A×n = 0 on all surfaces

where B = ∇×A. Specializing to axial symmetry for Az and imposing the Coulomb gauge ∇ ·A =
0, we obtain

1
µ0σr

1
r

∂

∂ r

(
r

∂Az

∂ r

)
=

∂Az

∂ t
− V

h
(3.2)

where 1
µ0σr

is the magnetic diffusivity. Applying a Laplace transform we get,

1
µ0σr

1
r

∂

∂ r

(
r

∂ Âz

∂ r

)
= uÂz− V

hu
(3.3)

which, upon closer inspection, is recognized as a modified Bessel equation with u as the Laplace
transform variable. A general solution for this partial differential equation (PDE) has the form:
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Âz = c1I0(
√

µ0σrur)+ c2K0(
√

µ0σrur)+ Âz,p (3.4)

where Âz,p is a particular solution of the PDE, I0 and K0 are the modified Bessel functions of the
first and second kind, respectively, of order 0, and c1,c2 ∈R. Immediately we recognize that since
K0 has a logarithmic singularity at r = 0, we must have c2 = 0. We also realize that the right-hand-
side of 3.3 is independent of r, so a constant particular solution is a viable solution. The result
is

0 = uÂz,p− V
hu

Âz,p =
V

hu2 . (3.5)

We are able to find c1 by satisfying the boundary condition Âz(r = a) = 0:

c1I0(
√

µ0σrua)+
V

hu2 = 0

c1 =
−V

I0(
√

µ0σrua)hu2 . (3.6)

This gives us

Âz =
−V
hu2

(
I0(
√

µ0σrur)
I0(
√

µ0σrua)
−1
)

.

We get Az by applying the inverse Laplace transform and integrating via residue theory 1.

Az =
−µ0σrV

h

(r2−a2)
4

−2a2
∞

∑
n=1

e
−k2

nt
µ0σra2 J0

(
knr
a

)
k3

nJ′0(kn)

 (3.7)

where kn is the nth root of J0. Finally, the axial magnetic flux, Bθ , is given by

1See appendix A for details
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Bθ =−∂Az

∂ r
=

µ0σrV
h

 r
2
−2a

∞

∑
n=1

e
−k2

nt
µ0σra2 J′0

(
knr
a

)
k2

nJ′0(kn)

 . (3.8)

As a check, notice that as t approaches infinity, Bθ goes to a linear profile, which is what is ex-
pected.

A Perturbation Solution in the Void

We now need to obtain a solution in the void region that is consistent with the inner solution for
non-zero σv. Since σv is very small, one would think that a perturbation analysis may be sufficient,
as it also clearly provides insight into the physics of the problem. From a physical point of view,
if the void conductivity is very small, it is clear that the outer region might be considered in quasi-
steady state. We, thus, implicitly assume that we are only interested in time scales longer than the
diffusion time across the void region and that these early transients may be ignored. Therefore, we
can further assume that the solution may be given sequentially as

Av
z = A0 + µ0σvA1 + µ

2
0 σ

2
v A2 + · · ·

µ0σv is small.2 Since σv very small relative to σr we expect that two terms will be sufficient for
our perturbation solution.

Matching up terms of the same order we find that for the first equation

1
r

∂

∂ r

(
r

∂A0

∂ r

)
= 0

which is easily solved, resulting in
A0 = c ln(r)+d (3.9)

where c and d are constant with respect to r but may depend on time. In order to satisfy continuity
of magnetic field with the inner solution we must have

c =
µ0I(t)

2π

since we have

B0 =−∂A0

∂ r
=

µ0I(t)
2πr

2Note that we could give a formal analysis in terms of a non-dimensional small parameter σv/σr but this informal
approach is sufficient and clear enough for our purposes.
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at r = a. The constant electric field at r = a, provides for a zero boundary condition on A0 that we
can use to solve for d. For this condition to hold,

d =
µ0I(t)

2π
ln(a).

and

A0 =−µ0I(t)
2π

ln(r)+
µ0I(t)

2π
ln(a) =−µ0I(t)

2π
ln
( r

a

)
. (3.10)

The next order equation in the pertubation expansion is

1
r

∂

∂ r

(
r

∂A1

∂ r

)
=
(

∂A0

∂ t
− V

h

)
(3.11)

Substituting in A0, Equation 3.11 becomes

1
r

∂

∂ r

(
r

∂A1

∂ r

)
=−µ0

˙I(t)
2π

ln
( r

a

)
− V

h
. (3.12)

We solve this the same way as we did for A0, and, applying the perturbation boundary conditions
∂A1
∂ r (r = a) = 0 and A1(r = a) = 0, we get

A1 =

− µ0İ(t)
2π

(
r2

4
ln
( r

a

)
− r2

4
+

a2

4
ln
( r

a

)
+

a2

4

)
− V

2h

(
r2

2
− a2

2
−a2 ln

( r
a

))
. (3.13)

Therefore,

B1 =
µ0İ(t)

2π

(
r
2

ln
( r

a

)
− r

4
+

a2

4r

)
+

V
2h

(
r− a2

r

)
, (3.14)

and

Bθ =−∂Az

∂ r
=− ∂

∂ r
(A0 + µ0σrA1)

= B1 + µ0σvB1

=
µ0I(t)
2πr

+ µ0σv

[
µ0İ(t)

2π

(
r
2

ln
( r

a

)
− r

4
+

a2

4r

)
+

V
2h

(
r− a2

r

)]
(3.15)
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is our final result. This, with our previously derived solution for Bθ in the rod, makes a complete,
analytic solution suitable for verification analysis.

All that remains is the derivation of the boundary condition at r = b that produces the desired
electric field at r = a. The electric field in the void is

E =
V
h
− ∂Az

∂ t

=
V
h

+
µ0İ(t)

2π
ln
( r

a

)
+ µ0σv

[
µ0Ï(t)

2π

(
r2 +a2

4
ln
( r

a

)
− r2

4
+

a2

4

)]
. (3.16)

When evaluated at r = b, this equation gives us our desired boundary condition.

Note that the solution in the void has terms which are proportional to the time derivatives of the
total current in the rod, I(t), which has the relationship I(t) = 2πa

µ0
Bθ (a, t). Expressions for these

values are given in Equations 3.17, 3.18 and 3.19.

I(t) =
πa2σrV

h

1−4
∞

∑
n=1

e
− k2

n
µ0σra2 t

k2
n

 (3.17)

İ(t) =
4πV
µ0h

(
∞

∑
n=1

e
− k2

n
µ0σra2 t

)
(3.18)

Ï(t) =
4πV

µ2
0 hσra2

(
∞

∑
n=1

k2
ne
− k2

n
µ0σra2 t

)
. (3.19)

We would expect an initial condition Bθ (r,0) = 0 which holds for the first term in the expansion
Equation 3.15, but the next term depends on İ(t), which is singular at t = 0 so that clearly the
expansion has non-uniform validity in time. This is a clue that the perturbation theory approach
for generating a comparison solution for this specific problem may not provide all that is desired.

Verification Study Details

We set up our model as a 1 mm long cylindrical rod with a 2 mm radius, a 3 mm deep void (see
Figure 3.2), and a 1000 V/m electric field maintained on the surface of the rod. We use Equation
3.16 to produce a boundary condition at r = b (see Figure 3.3) that should produce the same effect
in ALEGRA as if we applied the electric field directly to the surface of the rod. For the electrical
conductivity of the rod we choose σr = 1 MΩ·m, and for the electrical conductivity of the void we
chose σr = 1.0 Ω·m.

22



6

θ

h
ẑ
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Figure 3.2: ALEGRA 2D (r,z) Cross Section
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Figure 3: 2D (r,z) mesh with BC on right side
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Figure 3.3: 2D (r,z) mesh with boundary condition on right side

For our mesh, we create two blocks, one representing the rod and another representing the void.
This allows us to ensure that the conductivity jump is on the boundaries of elements regardless of
how many elements we want to use. We set each block to have only one element in the z direction,
and allow the number of elements in the r or s direction to vary. Because we anticipate the PSI-S
formulation to converge very quickly, we set the first mesh in our study to have one element per
block in the r or s direction. Thus, our very first mesh has exactly two elements. The strategy we
employ for increasing the mesh size is to double the number of elements per block, per test.

In order to get ALEGRA to produce easily interpreted results, we impose a condition on the
time steps ALEGRA uses to perform its calculations. The theoretical leading order error in ALE-
GRA’s discrete solution is O(∆t) + O((∆r)2), where ∆t is the time step used in the calculation, and
∆r (or ∆s) is the length of a mesh element in the r (or s) direction. So by forcing ∆t ∝ (∆r)2, we
make our error O((∆r)2)+ O((∆r)2) = O((∆r)2), which allows us to confidently expect an order 2
rate of convergence for these tests. We do this by making some careful observations and choices
when setting up our tests in ALEGRA.

Let Ns denote the smallest number of elements we use in our convergence analysis, if we
double the number of elements for each subsequent test, then we may say that the ith test in our
convergence analysis will have Ns ·2i elements per block. It follows that the lengths of the elements
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decrease by half every subsequent test, so we may write: ∆r = 1
2i , i ∈ N. Now let Ni denote the

number of elements in the ith test, so ∆r = Ns
Ni

= 1
2i , we now desire ∆t = c(∆r)2 for some constant

c. Theoretically, our choice of c is arbitrary, but working with a numerical method constrains our
choice. The time step needs to always be small enough to allow ALEGRA to accurately capture
interesting phenomena, but it also needs to be large enough to assure that our numerical method
finishes its calculation in a reasonable amount of time. We see that when i = 1, then ∆t = c
seconds, which helps us figure an upper bound on c. The diffusion time for the magnetic flux
is roughly µ0σra2 = (4π × 10−7)(1× 106)(0.002)2 = 5.03× 10−6, so a safe choice seems to be
c = 0.5×10−6. This ensures that ∆t is small enough for ALEGRA to produce good results, but is
still large enough that we can increment i several times before ∆t becomes too small for ALEGRA
to run efficiently. In addition, we can use this time step as the smallest comparison time because it
is early in the transient phase of our test problem, but far enough along for us to observe interesting
results.

Finally, we must carefully choose ALEGRA’s method of output. We choose to use ALEGRA’s
capability to output data by cycle to ensure that we obtain the data we desire. Notice that

(∆r)−2
∆t = (∆r)−2(0.5×10−6)(∆r)2 = 0.5×10−6

so, every (∆r)−2 = 22i cycles, ALEGRA computes 0.5×10−6 seconds worth of data. Therefore,
we have ALEGRA emit an output every (∆r)−2∆t cycles per test until the final time is reached,
resulting in comparable data every 0.5 µs. Around 30 µs, the simulation begins approaching
steady state, so we set the termination cycle to be 6× (∆r)−2∆t cycles, which ends the simulation
at that time.

Larger data sets can obtained with this method by dividing the time step above by factors of
10 and multiplying the number of cycles to termination by the same factor of 10. We use a single
factor of 10 when we perform these calculations.

Convergence Results Using the Perturbation Solution

Figures 3.4, 3.5, and 3.6 show profile plots of Bθ for the different formulations as well as a
tables showing the convergence rates measured for each mesh size using the L2 norm. The black
line represents the analytic solution we derived previously. Each result is given at time t = 1.5 µs,
which is fairly representative of our general results and is still in the transient phase of problem.
Also, each plot represents nodal data from nodes located at the bottom of the mesh (z = 0.0). We
could also look at the nodal data at the top of the mesh or the elemental data at the center of the
mesh, but nodal values are more accurate, and, since we have essentially made this problem one
dimensional by having only one element in the z direction, we are able to accurately represent the
overall results by only examining this set of nodes.
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Figure 3.4: Bθ profile for FIFE formulation at t = 1.5 µs
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Figure 3.5: Bθ profile for R-Scaled formulation at t = 1.5 µs
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Figure 3.6: Bθ profile for PSI-S formulation at t = 1.5 µs

We can see that FIFE formulation does not converge at all for these mesh resolutions (the largest
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two mesh resolutions are barely distinguishable at the bottom of the plot). As a matter of fact, we
do not see convergence for this formulation at all until we have mesh resolutions of thousands of
elements3. This slow overall convergence is what makes the FIFE formulation impractical for this
type of problem.

The R-Scaled formulation does better, but seems to be converging at an order one rate of
convergence instead of order two. We see the same with the PSI-S formulation. This is not what
we expected. To check our work, we construct two variations of our test. For the first variation,
we perform the same test but with the void block removed. For the second, instead of driving the
problem with an electric field boundary condition, we use a magnetic field boundary condition
proportional to total current.

Convergence Results Without the Void

In this variation we completely omit the void block from the problem and see if we can see
second order convergence. Our boundary condition now is simply a constant axial electric field set
to 1000 V/m applied to the surface of the rod. The result appears to be second order convergence
for the FIFE formulation as well as for the PSI-S formulation. The R-Scaled formulation appears
to converge at a less than second order rate. We attribute this slower convergence rate to the
inaccuracies near r = 0 rather than a problem with the code or the test, and note that the R-Scaled
formulation could be converging even slower than what is seen here. These results are shown in
Figures 3.7, 3.8, and 3.9. They suggests that ALEGRA handles this problem easily without the
jump in conductivity and that the PSI-S code is behaving as it should.
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Figure 3.7: Bθ profile for FIFE formulation without void at t = 1.5 µs

3See Appendix B
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Figure 3.8: Bθ profile for R-Scaled formulation without void at t = 1.5 µs
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Figure 3.9: Bθ profile for PSI-S formulation without void at t = 1.5 µs

Convergence Results with a Magnetic Field Boundary Condition

In the second variation, we use a magnetic field boundary condition proportional to the total
current, I(t), instead of Equation 3.16. The result is the use of a Dirichlet boundary condition to
solve the magnetic diffusion equations instead of a Neumann boundary condition. This boundary
condition is computed using Equation 3.20, and is entered into ALEGRA via a radial slot boundary
condition. This method appears to provide much better control over the solution as seen in Figures
3.10, 3.11, and 3.12 and second order convergence rates are observed. We may thus conclude that
the ALEGRA coding is correct, and that there must be another reason that we are not seeing second
order convergence in the electric field drive case.

I(b, t) =
2πrBθ (b, t)

µ0
(3.20)
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Figure 3.10: Bθ profile for current driven FIFE formulation at t = 1.5 µs
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Figure 3.11: Bθ profile for current driven R-Scaled formulation at t = 1.5 µs
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Figure 3.12: Bθ profile for current driven PSI-S formulation at t = 1.5 µs

We conclude that the problem is the approximate analytic solution. We can see that Equations
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3.15 and 3.16 both depend on derivatives of I(t), which are singular at t = 0, so some inaccuracies
can be expected from these equations. In this case, it seems that these inaccuracies are significant
enough to disrupt our verification analysis. The remedy, then, is a new analytic solution without
these issues.

An exact solution in the void

We now realize that we need a more precise solution which matches the solution in the rod
very carefully at r = a. In a certain sense, we need to manufacture an exact solution which has the
same character, but precisely matches the required boundary conditions for all time. We assume
that our analytical solution for Bθ in the rod holds, and use it to manufacture a solution for Bθ in
the void by again matching continuous magnetic and electric fields to our interior solution at the
interface r = a. The solution for Bθ in the rod is exactly the same and we go directly to solving
an expression for Bθ in the void region. Thereafter, we will derive the corresponding initial and
boundary conditions.

The general method of manufactured solutions [9] typically solves g = Du for g, where D is
a differential operator, u is some exact solution, and g is a source term stemming from the exact
solution. In the approach described below, we use a special form of this method, which allows us to
carefully choose the solution u so that we have no source term to solve for (i.e. g = 0). We suggest
that this general approach of extending solutions using fundamental solutions from a separation of
variables approach might be useful in other verification contexts.

Consider again Figure 3.1. We desire to manufacture a complete solution for the void region
which is consistent with the inner solution and free of singularities. We recognize the following
PDE

1
r

∂

∂ r

(
r
(
− 1

µ

∂Az

∂ r

))
= σ

(
−∂Az

∂ t
+

V
h

)
(3.21)

as a form of Bessel’s equation, and note that a general solution is:

Az =−µσV
4h

r2 + c1µlog(r)+ c2 (3.22)

+
∞

∑
n=1

e−
λ2

n
µσ

t [anJ0(λ 2
n r)+bnY0(λ 2

n r)
]

where c1, c2, an, bn, λn ∈ R are constants determined by boundary and initial conditions, and J0
and Y0 are Bessel functions of the first and second kind, respectively of order zero. Consider the
cross section shown in Figure 3.13.

29



6

θ

h
ẑ
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Figure 3.13: 3D View of Test Problem in (r,z) with Outlined Cross Section

As shown in Figure 3.14, this depicts a two dimensional cross-section of a rod of radius a and
height h, in a void of thickness b−a.
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Figure 3.14: 2D (r,z) Cross Section

On the interval 0≤ r ≤ a, we already have a solution via Laplace transform:

Az =−µσV
h

(r2−a2)
4

−2a2
∞

∑
n=1

e
− k2

nt
µσa2 J0

(
knr
a

)
k3

nJ′0(kn)

 (3.23)

We desire to extend this solution into a≤ r≤ b. Because we are manufacturing an analytic solution,
we can choose all the constants in the general solution in the void as we please, but because we
also want our solution to be an extension of Equation 3.23, the two solutions must satisfy the
physical jump conditions, i.e. continuity of tangential electric and magnetic fields. These two sets
of conditions allow us to find a complete solution to Bθ in the void consistent with the solution in
the rod. From here forward, we move away from the designation of the rod and void, and instead
derive the following equation with arbitrary material parameters. A superscript L will denote a
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reference to variables and equations on the left side of r = a, and a superscript R will denote a
reference to variables and equations on the right side, as shown in Equations 3.24 and 3.25.

AL
z (r = a, t) = AR

z (r = a, t) (3.24)

− 1
µL

∂AL
z

∂ r
(r = a, t) =− 1

µR

∂AR
z

∂ r
(r = a, t) (3.25)

We first consider how to achieve consistent matching time scales variation and then complete the
derivation by matching the jump conditions term by term in Equation 3.23.

Consistency of Time Dependence

The time dependent part of both solutions is located within the exponentials, forcing the con-
dition

e
− (λL

n )2t
µLσL = e

− (λR
n )2t

µRσR (3.26)

where λ L
n = kn

a . This leads to the requirement:

λ
R
n =

√
µRσRk2

n
µLσLa2 . (3.27)

This is the only condition imposed by consistency of time dependence.

Jump Conditions

The rest of the constants, c1, c2, an, and bn, are chosen to satisfy the jump conditions Equations
3.24 and 3.25. These conditions fully expanded are given below.
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µLσLV
h

2a2
∞

∑
n=1

e
− k2

nt
µLσLa2 J0(kn)
k3

nJ′0(kn)


=
(
−µRσRV

4h
a2 + c1µ

Rlog(a)+ c2

)
+

∞

∑
n=1

e
− (λR

n )2t
µRσR

[
anJ0((λ R

n )2a)+bnY0((λ R
n )2a)

]
(3.28)

− 1
µL

−µLσLV
h

a
2
−2a

∞

∑
n=1

e
− k2

nt
µLσLa2 J′0(kn)
k2

nJ′0(kn)




=− 1
µR

[
− µRσRV

2h
a+

c1µR

a

+
∞

∑
n=1

e
− (λR

n )2t
µRσR

λ
2
n
[
anJ′0((λ

R
n )2a)+bnY ′0((λ

R
n )2a)

]]
(3.29)

The steady state parts of these equations provide enough information to derive c1 and c2. c1 is
obtained first through Equation 3.29, resulting in Equation 3.30. Substituting Equation 3.30 into
Equation 3.28 results in Equation 3.31.

c1 =
(σR−σL)V

2h
a2 (3.30)

c2 =
µRlog(a)(σR−σL)V

2h
− µRσRV

4h
a2 (3.31)

What remains are the values of an and bn. Substituting Equations 3.27, 3.30, and 3.31 into
Equations 3.28 and 3.29 and simplifying, we get the following two conditions on an and bn:

∞

∑
n=1

[
anJ0

(
µRσRk2

n
µLσLa

)
+bnY0

(
µRσRk2

n
µLσLa

)]
= 0 (3.32)

∞

∑
n=1

σRk2
n

µLσLa

[
anJ′0

(
µRσRk2

n
µLσLa

)
+bnY ′0

(
µRσRk2

n
µLσLa

)]
=

2σLVa
h

∞

∑
n=1

1
k2

n
. (3.33)

Letting ξn = µRσRk2
n

µLσLa , Equations 3.32 and 3.33 further simplify to Equations 3.34 and 3.35.
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anJ0(ξn)+bnY0(ξn) = 0 ∀n (3.34)

anJ′0(ξn)+bnY ′0(ξn) =
2µL(σL)2Va3

σRk4
nh

∀n (3.35)

We now have a countably infinite set of two equations and two unknowns, each of which can
be solved to find the corresponding an and bn.

Let Φn =
(

J0(ξn) Y0(ξn)
J′0(ξn) Y ′0(ξn)

)
, with xn =

(
an
bn

)
and bn =

(
0

2µL(σL)2Va3

σRk4
nh

)
.

Then our system can be described by Φnxn = bn. Since this system is 2x2, as long as det(Φn) 6= 0,
Φn has an easily solvable inverse which can be used to find xn. In our case, we can show det(Φn) 6=
0.

det(Φn) 6= 0

First we note that J0(x) and Y0(x) are the fundamental solutions to the Bessel equation

y′′+
1
x

y′+ y = 0. (3.36)

to which we can apply Abel’s Theorem. This gives an expression for the Wronskian of 3.36,
which is actually equal to det(Ψ)(ξn). Abel’s Theorem gives us

W (J0(x),Y0(x))

=
[
J0(a)Y ′0(a)− J′0(a)Y0(a)

]
exp
(−∫ 1

x dx
)

=
[
J0(a)Y ′0(a)− J′0(a)Y0(a)

] 1
x

Since a is not a root of J0, J′0, Y0, or Y ′0,
[
J0(a)Y ′0(a)− J′0(a)Y0(a)

]
is a constant, and since 1

x is
never zero, det(Φn) = W (J0(ξn),Y0(ξn)) is never zero.

Therefore, Φ−1
n is given by 1

J0(ξn)Y ′0(ξn)−Y0(ξn)J′0(ξn)

(
Y ′0(ξn) −Y0(ξn)
−J′0(ξn) J0(ξn)

)
and

xn = Φ
−1
n bn =

1
J0(ξn)Y ′0(ξn)−Y0(ξn)J′0(ξn)

−Y0(ξn)
(

2µL(σL)2a3V
σRk4

nh

)
J0(ξn)

(
2µL(σL)2a3V

σRk4
nh

)  .
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Thus, an and bn are given by:

an =−
(

2µL(σL)2a3V
σRk4

nh

)
Y0(ξn)

J0(ξn)Y ′0(ξn)−Y0(ξn)J′0(ξn)
(3.37)

bn =
(

2µL(σL)2a3V
σRk4

nh

)
J0(ξn)

J0(ξn)Y ′0(ξn)−Y0(ξn)J′0(ξn)
(3.38)

ξn =
µRσRk2

n
µLσLa

(3.39)

Final Solution

We now have all the information we need to write out an analytic solution for Bθ in the void.

BR
θ =−∂AR

z

∂ r

=
µRσRV

2h
r− c1µR

r
−

∞

∑
n=1

(λ R
n )2e

− (λR
n )2t

µRσR
[
anJ′0((λ

R
n )2r)+bnY ′0((λ

R
n )2r)

]
(3.40)

where c1, c2, λ R
n , an, and bn are all given above. For our manufactured solution to be useful, we

need a method of driving the solution in ALEGRA. The method we use as a driving force is the
application of an initial condition and a boundary condition. We impose a Bθ field initial condition
to the bottom of the mesh, and an electric field boundary condition on outside of the void (right
side of the mesh) as we did before. The boundary condition and initial condition are given by:

E(b, t) =
V
h
− ∂Az

∂ t
(b, t)

=
V
h

+
1

µRσR

∞

∑
n=1

(λ R
n )2e

− (λR
n )2t

µRσR
[
anJ0((λ R

n )2b)+bnY0((λ R
n )2b)

]
(3.41)

Bθ (r,0) =−∂Az

∂ r

=


µLσLV

h

[
r
2 −2a∑

∞
n=1

J′0(
knr
a )

k2
nJ′0(kn)

]
, if r ≤ a

µRσRV
2h r− µRc1

r −∑
∞
n=1(λ

R
n )2 [anJ′0((λ

R
n )2r)+bnY ′0((λ

R
n )2r)

]
, if r > a

(3.42)

with a = .002,b = .005, and h = .001 as chosen parameters.
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Convergence Results Using the Exact Solution

The set up for the exact solution convergence study is exactly the same as the perturbation
solution case except that a new formula for computing the electric field boundary is required as
well as specification of an initial condition, Bθ (r,0). We analyze and plot the results of our test
with the manufactured solution the same way we did previously, and this time they meet our
expectations.

As with the perturbation solution, Figure 3.15 shows that the FIFE formulation is not converg-
ing at this mesh resolution; however, in Appendix B we see that, with mesh resolutions of 100 to
3200, not only does the FIFE formulation converge, but it converges at a second order rate. We feel
it is important to note that testing done previous to this study on this type of problem suggested that
the FIFE formulation is second order convergent, but that very fine mesh resolutions was needed
to see this behavior.

On the other hand, Figure 3.16 shows that the R-Scaled formulation appears to be approaching
a convergence rate of about 1.4, which we learned from our simplified problems is expected. Fi-
nally, Figure 3.17 demonstrates the excellent convergence and accuracy of the PSI-S formulation,
successfully concluding our verification analysis.
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Figure 3.15: FIFE formulation with manufactured solution at t = 1.5 µs

35



0.000 0.001 0.002 0.003 0.004 0.005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BTHETA at t = 1.50000005306e-06
z = 0.0

elements: 2

elements: 4

elements: 8

elements: 16

elements: 32

elements: 64

analytic Number of elements per block Order of convergence
1 1.59109e+00
2 1.59109e+00
4 1.60632e+00
8 1.66119e+00
16 1.53120e+00
32 1.45542e+00

Figure 3.16: R Scaled formulation with manufactured solution at t = 1.5 µs
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Figure 3.17: PSI-S formulation with manufactured solution at t = 1.5 µs

Current Driven Test

We also include here the results of the magnetic field or current driven test. The only change
required made for the manufactured solution version of this test are that the Bθ in Equation 3.20
is now the new manufactured solution, and we add the corresponding initial condition to the sim-
ulation setup. The results are not surprising. In Figures 3.19 and 3.20 we observe second order
convergence for the FIFE and PSI-S formulations, and no better than order 1.4 convergence for the
R-Scaled formulation.

36



0.000 0.001 0.002 0.003 0.004 0.005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BTHETA at t = 1.50000005306e-06
z = 0.0

elements: 2

elements: 4

elements: 8

elements: 16

elements: 32

elements: 64

analytic Number of elements per block Order of convergence
1 1.52986e+00
2 1.52986e+00
4 1.78815e+00
8 1.93444e+00
16 1.98358e+00
32 2.00109e+00

Figure 3.18: Current driven FIFE formulation with manufactured solution at t = 1.5 µs
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Figure 3.19: Current driven R Scaled formulation with manufactured solution at t = 1.5 µs
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Figure 3.20: Current driven PSI-S formulation with manufactured solution at t = 1.5 µs
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Chapter 4

Examination of Additional Variables

We now discuss two significant improvements that have been observed with the PSI-S formu-
lation. In particular we show benefits for computation of the current density and the Joule heating
rate.

Current Density

The current density, J, is given by the curl of the magnetic field and lies in the (r,z) plane. Thus

J = σE = ∇× (B/µ0) = Jr r̂ + Jzẑ =− 1
µ0

∂Bθ

∂ z
r̂ +

1
µ0

∂ (rBθ )
r∂ r

ẑ (4.1)

The ALEGRA 2D curl operator in axisymmetric coordinates is given by

J = σE = ∇× (B/µ0) =− 1
µ0

∂Bθ

∂ z
r̂ +

1
µ0

(
∂Bθ

∂ r
+

B̄θ

r̄

)
ẑ (4.2)

where the bar notation ¯(·) indicates a nodal average and the partial derivatives are computed us-
ing the finite element gradient operator on nodal fields evaluated at the center of the reference
coordinates linearly interpolating (r,z) coordinates.

Figure 4.1 shows a plot of Jz as a function of r at steady state. It is easily observed that there is
a significant difference between the Jz values as computed by the R-Scaled formulation versus the
Jz values as computed by Equation 4.4. We can verify that the PSI-S formulation is more accurate
by the simple observation that, at steady state, the current density should be constant in the wire.
The PSI-S formulation reflects this while the R-Scaled result does not.
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Figure 4.1: R-Scaled (green) and PSI-S (blue) overlay of Jz

We also performed an initial scoping study of the quality of Jr. A useful test problem to this
end is a wire in a void with a metal plate on the top and bottom of the mesh, and a constant Hθ

boundary condition on the outside of the void between the two plates. The effect is an initial J field
that diffuses into the wire and plates until eventually reaching steady state. We should be able to
see that Jr becomes approximately, spatially and temporally constant in the metal plates away from
the wire. Further, this constant value will be related to the boundary condition via the equation:

(2πr)hpJr = Ib (4.3)

where hp is the height (thickness) of the plate and Ib is the constant magnitude current associated
with the boundary condition on the outside of the void at r = b. By running the problem long
enough to be in steady state and measuring the magnitude of Jr at the center of the plate, we can
verify that Jr is of the correct magnitude.

We choose a 4 mm long wire with a radius of 1 mm. We let the void be 4 mm deep, and
we put 1 mm thick plates on the top on bottom of the mesh and utilize a spatial resolution of
6.25× 10−5m. We apply field corresponding to a constant current of Ib = 1.0 A on the outside
of the void, zero tangential fields on the outer top and bottom z planes and default zero tangential
electric field conditions on the radial surfaces of the plates. After running for 200 µs, we measure
Jr to be 3.254× 104 A/m2 at r = 4.9 mm. Inserting these values into Equation 4.3, we get Jr =
3.248×104 A/m2 showing that the results are equivalent to better than 1 percent.

It is also possible to define an alternate formulation for the current density by considering (s,z)
coordinates.

J =− 1
µ0

∂Bθ

∂ z
r̂ +

2
µ0

∂ψ

∂ s
ẑ (4.4)

Again we can evaluate each of these terms using the standard finite element gradient operator
transformed to (s,z) coordinates. Note that there are no terms proportional to 1/r or 1/s in this
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formula so one might think that this formula would be preferable. We have not yet found any
evidence for such a conclusion. Thus the difference shown above between the different formulation
are result of differences in the flux density solution and not due to the curl operator implementation.

Joule heating

Using the weak form equations, ALEGRA computes a natural definition for the Joule heating.
This results in a rise in temperature and thus also a rise in pressure through the equation of state.
We can see in Figure 4.2 that the R-Scaled formulation has significantly different pressure values
than the PSI-S formulation for the first 1-3 elements. The temperature variable is similar as can be
seen in Figure 4.3. These visual results suggest that additional benefits in proper thermodynamic
incremental behavior due to Joule heating are available with the PSI-S formulation.
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Figure 4.2: R-Scaled (green) and PSI-S (blue) overlay of the PRESSURE variable
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Chapter 5

A Relevant Validation Problem in
Magnetohydrodynamics

While the verification study indicates that we have been successful in showing the advantages
of the PSI-S formulation for verification problems, we are also interested in the performance of
the method on larger, more complex problems. One such problem is an exploding wire. The
exploding wire can be modeled as a 2D axisymmetric MHD problem with resulting dynamics
that can become very complicated very quickly, making it an excellent test of performance for the
PSI-S formulation.

In this chapter we will thoroughly describe our version of the exploding wire problem, run
the simulation, and analyze the results with comparison to experimental data from exploding wire
tests. We are particularly interested in discovering whether or not the validation study will show
improvements suggested by the verification test problem, as well as any other differences between
the results produced by the PSI-S formulation and those produced by the R-Scaled formulation.

Problem and Simulation Description

The exploding wire system considered here represents experiments described in References
[2] and [4]. Previous modeling for these experiments using ALEGRA also appears in Reference
[5]. The system is a capacitive discharge circuit which transfers stored electrical energy to thermal
and kinetic energy, via extremely intense Ohmic heating of a metal filament. The filament is a
narrow cylindrical wire, and broad steel electrode plates connect each end of the wire to the rest
of the discharge circuit. The circuit is an RLC (resistor-inductor-capacitor) circuit, with resistance
R = 2 Ω, inductance L = 1.15 µH, capacitance C = 1.88 µF, and initial capacitor charge voltage
V0 =−19.98 kV.

The ALEGRA simulations consist of a 2D axisymmetric computational domain, connected to
a lumped-element circuit model, which is laid out as shown schematically in Figure 5.1(a). The
ALEGRA mesh adds both resistance and inductance to the system, and the modeled circuit sup-
plies electromagnetic energy to the simulation domain, which manifests itself as current appearing
on the plates and in the wire. The circuit is coupled via time-dependent magnetic-field boundary
conditions maintained at the outer radial boundary of the domain. This coupling is similar to the
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Figure 5.1: Schematic diagrams (not to scale), showing (a) layout of circuit model driving the
exploding wire simulations, and (b) details of the geometry used in the 2D ALEGRA simulation
domain.

magnetic-field-driven verification problems of Chapter 3, in that the current density distribution
develops naturally in time in response to imposed electromagnetic fields. However, here, resistive
magnetohydrodynamics (MHD) is considered, rather than just transient magnetics. Further, the
boundary conditions for the magnetic field are driven by the nonlinearly coupled circuit model,
rather than a predefined current. In the simulation domain, the equations of resistive MHD are in-
tegrated forward in time, allowing the material and electromagnetic fields in the domain to evolve
according to the energy supplied from the circuit. The material models for copper and steel both
include Johnson-Cook strength models and Sesame equations of state 3320 and 4279 respectively,
with temperatures limited to the range 50 K ≤ T ≤ 50,000K. Lee-More-Desjarlais electrical con-
ductivity models are also used, encoded in Sesame tables 29325 for copper and 29428 for steel
[3].

A water-filled gap between the plates acts in similar fashion to the void used in the verifica-
tion tests, forcing the current from the circuit to flow in highly concentrated fashion through the
wire during the discharge event. This geometry, including the plates, wire, and air gap is shown
schematically in Figure 5.1(b). Improvements to the underlying finite element formulation used in
ALEGRA should affect solutions computed for this problem.

The concept of exploding wires has been studied extensively within a wide array of applications
ranging from the generation of electromagnetic radiation to the collection of data for calibration
of equation-of-state and conductivity models. [1, 13, 12, 7, 4, 2, 5, 11]. A significant body of
experimental data exists for exploding wires of various materials in various environments. Data
for this study were provided by George Vunni (US Army Research Laboratory), consisting of
tabulated time-histories of the current and voltage drop across the load for three tests performed
with copper wires as part of the study described in Reference [2].
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The copper wires used in these experiments had a radius a = 0.063 mm and a length h = 16.5
mm. For this wire radius, assuming a nominal fixed copper resistivity of σ = 50 MΩ·m, the
magnetic diffusion time would be approximately 0.25 µs, and the current density would therefore
be relatively well-diffused by the time current has been flowing for 1 µs.

In the present study, the ALEGRA simulation is run on four computational meshes, at 15, 30,
60, and 120 elements per mm. This corresponds to 0.9, 1.9, 3.8, and 7.6 elements spanning the
initial wire radius. We denote these cases here using N = 1, 2, 4, 8. The mesh is radially biased at
large radii, but the mesh aspect ratio is restricted to aspect ratios of 4 or less. The resulting mesh
sizes are 45,900, 184,200, 739,200, and 2,959,200 elements. The simulations are carried out using
both the R-Scaled and PSI-S formulations and are run in parallel on Sandia’s Skybridge cluster.

Behavior Near the Axis

To examine the effect of the axisymmetric formulation on the computed solution, we first
examine the behavior of the Bθ field near r = 0. Figure 5.2 is a zoomed-in view of the nodal Bθ

field near r = 0 at times t = 0.2 and 0.8 µs, sampled at a location 2.5 mm above the midplane
between the two electrode plates. There is no perceptible variation in the field along the length of
the wire prior to initial expansion of the wire, so this sample is representative of the entire space
between the plates at these early times. The data are extracted from the 3.8-element-per-wire-
radius case (739,200 elements) for simulations using the R-Scaled and PSI-S formulations. At
t = 0.2 µs, the expansion of the wire has not yet begun. At t = 0.8 µs, expansion is underway, and
the field has started to distort, but the wire has not yet begun to burst.
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Figure 5.2: Radial profiles of Bθ at two times prior to burst for 2D exploding wire R-Scaled and
PSI-S simulations at 3.8 elements per wire radius.

One can easily see the difference between the R-Scaled and the PSI-S formulations. The R-
Scaled formulation has the deforming kink over the first few elements, while the PSI-S formulation
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is accurately achieving the expected linear profile. This behavior should be anticipated, based on
the results shown in Chapters 3 and 4. It suggests that the PSI-S formulation provides improved
accuracy near the axis, which continues to affect the solution after motion of the wire has been
initiated.
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Figure 5.3: Radial profiles of Bθ at t = 0.6 µs for the 2D exploding wire simulations at various
mesh resolutions for the R-Scaled and PSI-S formulations.

To demonstrate the dependence of the two formulations on the spatial resolution, we examine
the same profiles, extracted from simulations at all four mesh resolution levels. This is shown in
Figure 5.3. for both of the formulations, at t = 0.6 µs. This is prior to initiation of expansion in the
wire near the midplane. At this early time, the profile of the Bθ field converges appropriately under
mesh refinement. As expected, the solution for the PSI-S formulation degrades much more slowly
as the mesh is coarsened, compared to the R-Scaled formulation. At N=2, the PSI-S result still
nearly overlays the N=8 result, while the R-Scaled field deteriorates. Even at the very coarse N=1
level, the PSI-S result is acceptable. This suggests that the PSI-S formulation should allow MHD
simulations to be run at lower resolution and thus lower cost for the user, without diminishing
accuracy.

Evolution of Two-Dimensional Field Variables

Time evolution of the computed 2D density and current density fields during the explosion of
the copper wire is shown for the two formulations in Figures 5.4 and 5.5, at 3.8 elements per wire
radius. The orientation and magnitude of the enclosed current is depicted by plotting contours of
the quantity 2πrBθ/µ0. The images are zoomed in to the vicinity of the interface between the
copper wire and the upper steel electrode plate. It is at these upper and lower interfaces where the
explosion begins. Only very subtle deviations are apparent in the details of the solution at this stage
of the solution between the two formulations, despite the noticeable differences seen in profiles of
Bθ prior to burst. This suggests that the PSI-S formulation retains the desirable properties of
the R-Scaled formulation for modeling the behavior of exploding wire systems, which have been
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Figure 5.4: ALEGRA results for the exploding copper wire system, modeled using the r-scaled
(top), and psi-s (bottom) representations at N = 4. The total density field is plotted, with contours
of 2πrBθ/µ0, at t = 1.2 and 2.8 µs.

demonstrated in previous work. [4] Meanwhile, it clearly improves the accuracy of the solution in
the region near the axis.

In the solutions shown in Figures 5.4 and 5.5, the electrode experiences significant ablation as
well as the wire. This environment of multimaterial ablation and extreme current densities places
stringent requirements on the ALEGRA software, which must avoid prohibitively small timesteps
and fatal conditions such as element inversion which can arise in these situations, particularly at
N=4 and 8. The simulations here run successfully out to t=5 µs even at N=8, when ALEGRA’s
second-order “midpoint” time integration scheme is used, and an artificial viscosity scheme that
includes hyperviscosity, coverage for both compression and expansion, and a Laplacian limiter to
pinpoint shock fronts while excluding regions of smooth flow. The “multilevel” (ML) algebraic
multigrid solver scheme for the iterative transient magnetics solve is also critical for running these
simulations successfully in a massively parallel environment.
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Figure 5.5: ALEGRA results for the exploding copper wire system, modeled using the r-scaled
(top), and psi-s (bottom) representations at N = 4. The current density field is plotted, with overlaid
material boundaries in black, at t = 1.2 and 2.8 µs.

Comparison to Experimental Circuit Data

The current and voltage characteristics of the exploding wire system provide a useful valida-
tion reference, and are compared here to ALEGRA simulations using the two formulations. In
the experiments of Reference [2], the wires and circuit settings for the three tests were nominally
identical, but uncertainties in dimensions and circuit parameters lead to variability in the results,
as studied in References [4] and [5]. There was also some uncertainty in the timing of the capac-
itor discharge initiation, resulting from inherent “jitter” on the order of 100 ns in the function of
the spark-gap switch used for initiation [14]. This provides a uncertain range within which the
computed solutions should lie.
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Figure 5.6: Time histories of current (left) and voltage (right) across the exploding wire, shown
for the R-Scaled and PSI-S representations at 1.9 elements per wire radius, with comparison to
measured data from three repeated experiments.
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Figure 5.7: Time histories of current (left) and voltage (right) across the exploding wire, shown
for the R-Scaled and PSI-S representations at 7.6 elements per wire radius, with comparison to
measured data from three repeated experiments.

The experimental current and voltage histories are compared to the ALEGRA simulations on
coarse and fine meshes (1.9 and 7.6 elements per wire radius) for the two formulations in Figures
5.6 and 5.7. We see that the prominent features of the circuit behavior are captured with good
fidelity by the simulations using both formulations, on both the coarse and fine meshes. In partic-
ular, the time of peak voltage and peak current are captured with good accuracy, which is a very
important aspect of these simulations, and is very sensitive to the details of the material model for
the wire. The simulations also accurately capture the shape of the rising edge of the current pulse,
indicating the magnetic field and associated self-inductance has been correctly computed.

Surprisingly, the improved PSI-S formulation has very little effect on the current and voltage
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histories at high mesh resolution. Results from the two formulations nearly overlay each other
in Figure 5.7. There is no visible difference in the time of peak voltage at this resolution. This
is surprising because of the differences in current density and thermodynamic variables found in
the transient-magnetics verification tests, discussed in Chapter 4. In the verification tests, the PSI-
S formulation produces a larger rate of Joule heating because it correctly computes a uniform
distribution of current density across the radius of the rod, while the R-Scaled formulation allows
a signficant downward excursion to appear near the axis.

0 50 100 150 200 250
r (µm)

100
101
102
103
104
105
106
107
108
109
1010
1011
1012

JE
 (
A
/m

2
)

N = 2

t = 0.2 µs

r-scaled

psi-s

0 1 2 3 4 5
t (µs)

0

10

20

30

40

50

60

70

80

90

Jo
u
le

 h
e
a
ti
n
g
 r
a
te

 (
M

W
)

N = 2

r-scaled

psi-s

Figure 5.8: Left: radial profiles of current density at t=2 µs at 1.9 elements per wire radius. Right:
time histories of the Joule heating rate at 1.9 elements per wire radius.

This effect does not occur in the exploding wire validation tests. As shown in the profiles of
current density in Figure 5.8, the downward excursion in current density for R-Scaled does not
appear. Further, the two formulations produce similar current density distributions, whose shape is
also affected by the variable conductivity of the material and the transient nature of the magnetic
diffusion process. Here, PSI-S in fact produces a slightly lower current density in some regions
of the wire, which results in the slightly lower rate of Joule heating at these early times relative
to the R-Scaled formulation, seen on the right-hand side of Figure 5.8. The effect is very small,
even at coarse resolution, and vanishes as the mesh is refined. This effect is also responsible for
the small difference in the “shoulder” region of the voltage history in Figure 5.6, at times between
approximately 0.6 and 1.1 µs. This shoulder feature corresponds to phase transition in the wire
material [4]. Here the PSI-S formulation is more faithful to the observed behavior. This leads
to a much more accurate value of peak current for PSI-S than for the R-Scaled formulation at
N=2. However, it also leads to a slightly later time of peak voltage, so some trade-off of effects is
apparent.
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Convergence of Wire Burst Timing

The timing of the burst event is a very important property of exploding wire systems, and one
of the most important quantities of interest in these simulations. The time of wire burst is easily
extracted from both experimental and simulation data by the voltage signature, which provides
a characteristically prominent spike with a well-defined maximum. The time of this maximum
voltage is often taken to be the burst time, which marks the approximate origin of the system of
shock waves generated by the event.

The burst “action” is also an important property of these systems, characterizing in a general
way the amount of energy deposition needed to achieve wire burst. In Reference [13], the specific
action g(t) is defined as

g(t) =
1

πa2

∫ t

0
I2(t ′)dt ′ (5.1)

where I(t) is the current across the wire at time t, and a is the initial wire radius. The burst action
gb is the value of g at the time of wire burst tb, which is the time of maximum voltage across the
wire.
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Figure 5.9: Burst time (left) and burst action (right) for experiments and simulations using R-
Scaled and PSI-S representations at four mesh resolution levels.

This information can be conveniently requested as an output “response function” in the ALE-
GRA software, using the derived variable capability with time sampling. The burst time is captured
using the “time of maximum value” and the burst action using the “at maximum of” commands.
The final value of these response functions, which appear in ALEGRA output, then provides tb and
gb.

The burst time and burst action trends with respect to mesh resolution are shown in Figure
5.9, with comparison to the experimental values. The ALEGRA simulations at high resolution
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provide an excellent match to the experimentally measured values. At the highest resolution, the
mean burst time and burst action from the experiments are both captured by the simulations to
an accuracy of approximately 2%. At lower mesh resolution, the results quickly converge toward
the reference values. Again surprisingly, the PSI-S results appear to converge at a slightly lower
rate compared to the R-Scaled cases. Since the simulations all produce larger-than-realistic burst
actions at low resolution, this difference is likely due to the slightly lower rate of Joule heating
observed for PSI-S at early times. However, with PSI-S, the convergence trend for the burst action
is completely monotonic, whereas for R-Scaled it oscillates slightly in the intermediate cases.

Tucker and Toth (1975) [13] developed a simple circuit analysis code to calculate burst action
and burst energy values for many different metals, which they matched to empirical data. Their
value for copper was gb = 1.73× 105 A2s/mm4. Experimental values extracted for this study
average to 2.64× 105 A2s/mm4. The simulation values at N = 8 are 2.59× 105 and 2.61× 105

A2s/mm4, respectively, for R-Scaled and PSI-S. These values differ by about 50% from Tucker
and Toth’s reference value, but they cautioned that their analysis was invalid for current densities
larger than 1011 A/m2, which is near the largest values attained in these simulations.

Computational Performance Data

The runtime data for these simulations provides further information as to the usefulness of the
PSI-S formulation. Total CPU time for each of the eight tests is recorded in Table 5.1, along with
some other details of the simulation. Here it is apparent that for these tests the two formulations
have roughly equivalent performance, except at the highest resolution. At 7.6 elements per wire
radius, the PSI-S simulation runs to completion 40% faster than the R-Scaled formulation.

Table 5.1: Runtime statistics for exploding wire simulations.
Case Total CPU (s) Total CPU (s) Element Cores Elements

R-Scaled PSI-S count per core
N=1 6.65e+2 6.82e+2 45,900 16 2869
N=2 3.96e+3 3.62e+3 184,200 32 5756
N=3 6.87e+3 6.77e+3 739,200 80 9240
N=3 5.97e+4 3.93e+4 2,959,200 320 9247

Further analysis shows that this is due to the higher rate of Joule energy deposition with the R-
Scaled formulation, which results in higher material temperatures, particularly at high resolution.
The copper and steel temperatures are limited to 50,000 K, but the water in the gap has no limits,
and at high resolutions its temperature becomes extremely high in some locations at high resolution
with the R-Scaled formulation, resulting in a relatively low (but not fatally low) timestep. This is
responsible for the larger runtimes. We conclude that, overall, the cost of using PSI-S compared to
R-Scaled is equivalent or lower.
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Chapter 6

Conclusion

We sought to implement a new formulation of the two-dimensional cylindrical symmetric mag-
netic diffusion equation using a coordinate transformation inspired by Melissen and Simkin[10].
We explained the transformation and used it to derive a new equation set and the finite element
counterparts and implemented this capability in ALEGRA. We then performed a verification anal-
ysis to show the superiority of the new PSI-S formulation over the previously implemented FIFE
and R-Scaled formulations. For our verification study, we used a wire in a void model in axisym-
metric geometry with a constant, axial-tangential electric field assumed to be on the interface of
the rod and the void, for which we were able to find an analytic solution using Laplace transform
techniques and perturbation theory. Due to the perturbation solution being non-uniformly accurate
near t = 0, it was unsatisfactory for completing our verification study. We manufactured a new
solution fully compatible with our time dependent solution in the rod, and used it to successfully
complete our verification analysis. In the process we gave detailed and convincing evidence of the
impracticality of the FIFE formulation for large axisymmetric application problems with material
conductivity jumps and changes.

Thereafter, we showed some additional benefits of the PSI-S formulation via demonstration of
more accurate computations of the temperature, pressure, and current density variables. We also
discussed a simple verification test for the radial current density formula.

We additionally carried out a validation study using the PSI-S and R-Scaled formulations to
simulate the exploding copper wire experiments of DeSilva and Vunni [2]. Disparities between
solutions using these two methods were very subtle for these simulations. For both formulations,
the prominent features of the experimental current and voltage histories were captured with very
good accuracy, including the time of peak current and voltage, and the current rise rate. The
simulations also generally showed monotonic convergence under spatial refinement, and burst time
and burst action were both captured within an accuracy of a few percent relative to the experimental
data.

Some details were represented more faithfully by the PSI-S formulation, particularly at early
times when most of the current flows near the axis. Other details were captured better using the
R-Scaled formulation. However, in both cases the differences were very subtle, and confined to
coarse meshes. We can conclude that the PSI-S formulation preserves the desirable properties of
the R-Scaled formulation (which was used for the analyses appearing in References [4] and [5],
while improving substantially the accuracy of the representation near the axis.
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In our analysis we have shown how verification studies can be particularly sensitive to the ac-
curacy and precision of the analytic solution used. However, we also proposed and utilized a fairly
general technique for easily manufacturing physically interesting analytic solutions using classical
separation-of-variable methods which allows for construction of interesting analytic solutions with
material property jumps given a solution for uniform properties in one region.

The PSI-S formulation is now coded into ALEGRA and ready for use and distribution. It
has yet to be determined whether the PSI-S formulation is reliable enough to become the default
axisymmetric magnetic diffusion formulation. However, we believe that we have now made a very
strong case for adopting this feature for production use.
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Appendix A

Az by Inverse Laplace Transform and
Residue Theory

Applying the inverse Laplace transform to Âz gives

Az =
1

2πi

∫
B

eut−V
hu2

(
I0(
√

µ0σrur)
I0(
√

µ0σrua)
−1
)

du (A.1)

where B is the Bromwich contour. The setup is perfect for an application of the residue theorem,
so we consider the poles of the function within the integral. The poles are at u = 0 and the roots
of I0(

√
µ0σrua). Because we can effectively deal with all the roots of the I0 term at once, we first

address u = 0, and then we address I0(
√

µ0σrua) = 0.

u = 0

Let γ be a closed contour around u = 0 does not enclose any value of u such that I0(
√

µ0σrua) =
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1
2πi
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I0(
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2πi
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Note that
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(A.3)
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therefore, we can find Res( f ,0) by expanding I0 in f (u).

f (u) = eut
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 (A.4)

The u−1 term is corresponds to the Residue, so

Res( f ,0) =−µ0σrV
4h

(r2−a2) (A.5)

Roots of I0

We now redefine our Bromwich contour to not contain u = 0, but still contain all other poles of
I0(
√

µ0σrua), which are all on the negative x-axis. Our methodology for this case is to rewrite our
function f in terms of two holomorphic functions h and g, such that f = g

h , then Res( f ,c) = g(c)
h′(c)

for each pole c. Before we start, however, we point out a few identities we will use later on:

• I0(x) = J0(ix), where J0 is the zero order Bessel function of the first kind

• I′0(x) = iJ′0(ix)

• J0(−x) = J0(x)
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• J′0(−x) =−J′0(x)

Let

g(u) = eut
(
− V

hu2

)
(I0(
√

µ0σrur)− I0(
√

µ0σrua)) (A.6)

h(u) = I0(
√

µ0σrua) (A.7)

and

αn =− k2
n

µ0σra2 . (A.8)

Then, g(αn) 6= 0 as long as r 6= a and h(αn) = I0(ikn) = J0(−kn) = J0(kn) = 0. Now,
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Thus the residue theorem holds, and we may compute the remaining integral.
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The total value of the integral is sum of the residues, so our final result is:
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Appendix B

FIFE convergence

The results for the FIFE formulation driven with electric field boundary conditions at t = 1.5µs
with 100-3200 elements shows that the method is formally correct but vastly less optimal for
practical purposes when compared with results for the PSI-S formulation given in the text. In
particular, note that in the manufactured solution case, mesh resolutions of around 1000 elements
are required to start seeing second order accuracy in both the rod and the void.
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Figure B.1: Perturbation Solution
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Figure B.2: Manufactured Solution
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